

Python best practices

Prepared by Lucien Zuber

Reviewed by Daniel Hunacek

Date 03.08.2017

2

PROJECT INFORMATION

 Project name Hotmaps
 Grant agreement number

723677

 Project duration 2016-2020
 Project coordinator Dr. Lukas Kranzl

TU Wien - Vienna University of Technology
Energy Economics Group – EEG
Gusshausstrasse 25-29/370-3
A-1040 Wien / Vienna, Austria
Phone: +43 1 58801 370351
E-Mail: kranzl@eeg.tuwien.ac.at

Legal notice

The sole responsibility for the contents of this publication lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the INEA nor the European Commission is responsible
for any use that may be made of the information contained therein.

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the written permission of the publisher. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. The quotation of
those designations in whatever way does not imply the conclusion that the use of those designations is
legal without the consent of the owner of the trademark.

mailto:kranzl@eeg.tuwien.ac.at

3

Introduction 4

Best Practices 4

1.1 Indentation .. 4

1.2 Organising imports 5

1.3 Blank spaces .. 5

1.4 Comments ... 6

1.5 Naming conventions 6

1.6 Various recommendations 7

4

Introduction

The purpose of this tutorial is to explain some basics best practices in python. This is based on
a documentation that can be found here: https://www.python.org/dev/peps/pep-0008/#a-
foolish-consistency-is-the-hobgoblin-of-little-minds

Best Practices

1.1 Indentation

An indentation level should take 4 spaces.

As indentation is capital in python, it is important to use it correctly. If there is a need to have
a command split in several lines, it needs to be done in a clever way:

Yes:

Aligned with opening delimiter.

foo = long_function_name(var_one, var_two,

 var_three, var_four)

More indentation included to distinguish this from the rest.

def long_function_name(

 var_one, var_two, var_three,

 var_four):

 print(var_one)

Hanging indents should add a level.

foo = long_function_name(

 var_one, var_two,

 var_three, var_four)

No:

Arguments on first line forbidden when not using vertical

alignment.

foo = long_function_name(var_one, var_two,

 var_three, var_four)

Further indentation required as indentation is not distinguishable.

def long_function_name(

 var_one, var_two, var_three,

 var_four):

 print(var_one)

5

1.2 Organising imports

The imports should be on several lines

Yes: import os

 import sys

No: import sys, os

But you can still say this

from subprocess import Popen, PIPE

you should group them by:

Standard library imports

Related third party imports

Local application/library specific imports

And put a blank line between those groups

It is better to be the more accurate when you specify a package

from mypkg.sibling import example

You can also precise them in a relative import

from .sibling import example

1.3 Blank spaces

You should limit the blank spaces to the minimum.

Yes: spam(ham[1], {eggs: 2})

No: spam(ham[1], { eggs: 2 })

Yes: foo = (0,)

No: bar = (0,)

Yes: if x == 4: print x, y; x, y = y, x

No: if x == 4 : print x , y ; x , y = y , x

6

Yes: spam(1)

No: spam (1)

Yes:

x = 1

y = 2

No:

y = 2

long_variable = 3

1.4 Comments

It is better to write complete sentences in your comments. It should begin with an uppercase.
Before an inline comment you should enter at least two tabulation
x = x + 1 # Compensate for border

sometimes it may be better to have your comments on several lines

1.5 Naming conventions

Variables:
They are all in lower-case and are separated by underscore:
this_is_a_variable

If the variable is a constant, it musts be in uppercase and separated by underscore
THIS_IS_ANOTHER_VARIABLE

If the variable is not meant to be reused by other users (private), it should be written in
lower-case and begin with two underscores (for avoiding naming conflict)
__this_variable_should_not_be_modified
Note that this kind of variable are always accessible by other programms, but this means that
this variable is not supposed to be modified.

Functions:
Functions are supposed to be written in lower case and separated by underscore:
this_is_a_function

Names to Avoid:
You should not used the characters “l” (L in lowercase), “O” (o in uppercase), “I” (i in
uppercase)

7

Modules (file):
They should have short, lowercase name, you can use underscores to improve readability
module_name

Package:
They should have short, lowercase name, but you shouldn’t use underscore, so use only one
word

Classes:
The name of classes are supposed to be written with CapWords or CamelCase
ClassFunction

Exception:
Since exceptions are like a class, it follows the same rule (CapWords), but you should add
Error at the end of it
NullError

1.6 Various recommendations

If you want to compare using None, use is or is not instead of an operator
Use is not instead of not … is

Yes: if foo is not None:

No: if not foo is None:

Your functions should start with the parameter self
Foo(self):

 Contact

